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Decoupling and Order Reduction for Linear Time-Varying
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o The class of time-varying linear systems which are two-time-scale en
an interval may be decoupled by a time-varying transformation of
variables into separate subsystems containing the slow and fast dynamic
parts. The transformation is obtained by solving a nonsymmetric Riccati
differential equation forward in time and a linear matrix differential
equation backward in time. Small parameters are identified which measure
the strength of the time scale separation and the stability of the fast
subsystem. As these parameters go to zero, the order of the system is 1
reduced and a useful approximate solution to the original system is
obtained. The transformation is iliustrated for examples with strong and

weak fast subsystem stability.
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1. Motivating examples of time-invariant problems.

The longitudinal dynamics of an F-8 aircraft (cf. Etkin [12] and
Teneketzis and Sandell [35]) can be modeled by an initial value problem
for a fourth order linear system of the form x = Ax + Bu with the
physical variables being the "primarily slow" velocity variation and

flight path angle and the "primarily fast" angle of attack and pitch

rate. The single control is the elevator deflection. The exact solution

for the free response of thecomponents of x(t) is plotted in Figures 1

and 2. Our objective is to determine a solution X(t) of a reduced second

order model which will approximate the dynamics of the given fourth order

model away from the initial time t = 0. We wish, in particular, to avoid

integration of the full order system or a complete eigenanalysis of A

t
= eAtx(O) + j eA(t's)B(s)u(s)ds.
0

We note that approximations to the matrix exponential eAt

which would provide the exact solution x(t)

are, indeed,

still the subject of current research {cf. Moler and Van Loan {23]) and

that they are not simple to compute.
Qur criteria for such approximations will naturally involve the

For this problem, we have the "slow" eigenvalues

eigenvalues of A.
= ~0.94 + i3.0.

= -0.0075 * 10.076 and the "fast" eigenvalues f, ,

®1,2
Our method will rely upon the time-scale separation, measured by the

smallness of the parameter j = Iszlf][ = 0.024, and the relative

stability of the fast eigenvalues, measured by the parameter

o = -|Re szl/Re f, = 0.0081. Most important, however, is that the ratio
of the fast-mode decay constant (-1/Re(f])) to the length T of the time
. . . o o ]
interval of interest satisfies l) = !bfgg bsw;:"
< oig o ¢ B ::H: a
" IS g
e —— g "gﬁmg
t w1 e oy o
' . %: 50" g l ""_;3' ;’O‘a
RE: Report Number j PR j § § B
Technical Report No. 27-1 per Ms. Fee— 0, 3R a8 oy
Randall, ONR/Code 432 g \l ’ 5
S |
i el 13' i } o
[$} { L l‘j\
| ! .




]
! . 4. 00 : S
2.00 |
/—exact response, X Figure 1:
; .00 -
ze](.’mtwn duced ord - F-8 aircraft mo
(;;}a 1(; /_re uced order response, x Velocity variat
sec .2.00 - (a slow variabl
vs. time
-4.00 _
-6.00 _
-8.00 _
210,00 —— l l e
.00 1.00 2.00 3.00 4. (0 5. 00
time (sec)
01z _ - o e
.010 N ~—————exact response, x l
s X Figure 2:
: reduced order response, X .
; F-8 aircraft mod
' Angle of .0C6 ] Angle of attack |
- Attack (fast variable)
i _— vs. time.
(radians) o4 e—
.
) L002
' o000 )
14
! |
‘* - OUZ B [ [ T i
- . 000 1. 000 2. 000 3,000 4. 000 5. 000
;\, time (sec)
b
s
i
!




m e

O<L= '] _].06 <(-1

Re(f])T ST

For u and € small we expect our reduced order model to be a good approxi-
mation to the solution on an interval 0(eT) < t < T, while on

0 <t < 0(eT) any fast mode components excited by the initial conditions
may be significant and the approximation x(t) which ignores them would be
inappropriate. As the figures suggest, T must be quite large in order
for the initial layer to be relatively narrow.

For large dimensional linear problems, one cannot readily compute
exact solutions to compare approximate solutions against. In power
system models, systems involving several hundred variablies are common.
They are often approximated by reduced order models involving both
differential and nonlinear algebraic equations which neglect fast initial
transients (cf. Van Ness [37]). An algebraic system g(x,z,t) = 0 could
correspond to a steady-state for the differential system €z = g(x,z,t)
with the small parameter e representing "parasitics”. The practical
importance of obtaining reduced order models follows largely because the
computational effort involved in numerically integrating systems of
differential equations increases at least as the square of the order.

A second example of a two~time-scale problem is the sixteenth order
model of a turbofan engine which was the theme problem for a recent
conference on control of linear multi-variable systems (cf. Sain [31],
Skira and DeHoff [33), and DeHoff and Hall [10]). The linear model is of

the form x = Ax + Bu, y = Cx + Du, with the state variables being fan

speeds, pressures and temperatures. The five control variables u are




fuel flow, exit nozzle area, two vane angles, and compressor bleed; and
the outputs y are thrust, total airflow, a temperature, and two stall
margins. The objective in the controller design is to achieve rapid
thrust response without violating several operating constraints. The

model is one of thirty-six different linear models obtained from a non-
linear simulation of the engine. It represents the turbofan operating at
sea level with near maximum non-afterburner power. This is an operating
point which every engine must pass through at takeoff. Based on the
eigenvalues of this model and T = 2 the time-scale separation and fast
mode stability parameters are (u,e) = (0.304, 0.000867), (0.371, 0.0285),
(0.383, 0.0744), respectively, for the number n of "slow" modes chosen

as 15, 5 or 3. Since an order reduction from 16 to 15 isn't substantial,
we shall use ny = 5. In all cases, the time scale separation and relative
stability parameters p and ¢ are only marginally small, while the fast-mode

stability parameter ¢ is quite small. We nonetheless obtain good

appreximate solutions by solving a reduced (fifth) order system instead
of the original sixteenth order problem. In Figures 3 and 4, the exact
solution of the sixteenth order problem and the solution of our fifth
order model of the slow dynamics are plotted for the thrust and fan speed
in response to changes in controls. The control inputs are step changes
in fuel flow rates and inlet guide vane position. The second case, cf.
Figure 4, provides a severe test to the reduced order model since the
inlet guide vane is located at the front end of the engine and there is
some delay before its effect is propagated to the net thrust. We note

that the approximations are not good for t < 0.28 =~ 10c and that this

initial layer will become narrower relative to T as « tends toward zero.
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2. The time-varying problem—an exact approach.

Several earlier papers (cf. Kokotovic [16], Chow and Kokotovic [7],
0'Malley and Anderson [28] and Anderson [3]) have discussed time-

invariant problems, so let us now consider the time-varying system

(1) x = A(t)x + B(t)u(t) , 0<t<T,

where A and Bu are specified.

A system such as (1) will be called two-time-scale on the interval

[0,T] if the spectrum A(A(t)) of the n x n matrix A can be partitioned
into two sets S{t) and F(t) with n and n, =n -n, elements,

respectively, such that

AA(t)) = s(t) U F(t) ,

(2) max |s z .
5,ES fef J

throughout 0 < t < T with

max (s(t)/f(t)) << 1
O<t<T

(3)

=
]

Roughly, then, u is an upper bound for a ratio of time-varying eigen-
values. We note that if |Re fj(t)f is large, a corresponding vector
solution of the unforced system will be locally exponentially growing or
decaying, while if |Im fj(t)l is large, the corresponding solution will
oscillate rapidly Tocally. We also note that different modelers might

select different values of " for the same system, and that the more
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difficult problems where n, varies across [0,7] will not be considered
here. Finally, the common situation where the eigenvalues of A cluster
into several sets might be handled by repeated application of our
technique, cf. Kokotovic et al. [17] and Winkelman et al. [40].

For general time-varying systems, it is well known that eigenvalue
stability does not imply stability, cf. e.g. Coppel (8}. The result is,
however, more nearly true for singularly perturbed systems. Thus, for

the singuiarly perturbed initial value problem for

x = A(t,k)x + B(t,k)z + C(t,k) ,

kz = D(t,k)x + E{t,x)z + F(t,<) ,

with smooth coefficients on 0 < t < T, the limiting solution as x tends

to 0" on an interval 0 < t < T will satisfy the reduced order system

i

X = A(t,0)X + B(t,0)Z + C(t,0) , X(0) = x(0) ,

o
]

D(t,0)X + E(t,0)Z + F(t,0) ,

provided the matrix E(t,0) is stable throughout 0 < t < T. Further, an
initial boundary layer (or region of nonuniform convergence) occurs in
the z variable near t = 0 and the fast dynamics there evolve on a

T = t/k time scaie, cf. 0'Malley [26,27]. Such theory suggests that
eigenvalue stability may be appropriate for determining the behavior of
two-time-scale systems. These results apply to systems where the

coefficient matrices A,...,F have bounded t and » derivatives. Related

problems on the semi-infinite interval t > 0 are treated in Hoppensteadt

[15], Barman [5], and Vidyasagar [36]. With less smoothness,
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counterexamples exist and caution must be observed, cf. Kreiss [18,19]. For

these reasons, Kreiss introduced hypotheses demanding that E(t,0) be
"essentially diagonally dominant."

We shall not suppose that the given system (1) is two-time-scale,
Eut rather that it can be transformed into a two-time-scale system by a

time-varying transformation

(4) y=T(t)x ,

with the system for y being "time-scale decoupled" throughout 0 < t < T.

Specifically, let the transformation matrix T have the form

1+ K(t)L(t K(t I K(t) 71 0 ]
" (t) (t) iﬂ,] ' ;

(5) T(t) = = | ,
L(t) 1'12‘J Lo Ian, Ll.(t) I”zJ

and let the matrices L(t) and K(t) be determined so that
(6) y = A(t)y + T(t)B(t)u ,

where A has the block-diagonal form

F\H(t) 0
At) =

L 0 Ezz(t)

with the Ny eigenvalues of ﬂ]] being small in magnitude compared to those

of A22 throughout 0 <t < T. For u = 0, the slow modes for (6) would be

4
given by y = { :] where 2 satisfies the lower order system }] = A]]yl
0
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while the fast modes are [y J where Yy = A22y2. We note that the trans-
2

formation matrix 7 has the explicit inverse

I Kt |
)

i-L(t) I+ L{t)K(t)

~1

(7) To(t

so T is always nonsingular and transformations between x and y coordinates
are particularly convenient. Analogous transformations have been employed
in the singular perturbations context by Wasow [38], Harris [14], and
Kokotovic [16], for discrete problems by Phillips (29], and for difference
equations by Matheij [21].

As a first step toward time-scale decoupling, let us set
(8) z = T](t)x

for the block triangular matrix

~ -
In 0
1
T](t) =
L(t) In
2

Clearly
(9) z = A(t)z + T,(t)B(t)u
where




A 'l _ ~
A(t) - (T]A + T] )T] ( 1\])
Ay - At Az -}
L+ LAYy - Ayl = LA, + Ay, Aoy + LA]21

presuming the original A matrix and A are both partitioned after their
first Ny rows and columns. In order for A to be upper block-triangular,

the Ny X Ny matrix L must satisfy the matrix Riccati equation

(10) L = Ayl - LAy + LALL - Ay

throughout 0 < t < T. Selecting L(e) = 0 for a yet-unspecified endpoint
= 0 or T makes T](e) = 0 and Ti(e) a similarity transformation. Thus

e
A(e) will be two-time scale provided A{e) is. Let us suppose

(H1) A(e) has n, "slow" eigenvalues in S(e) and n, "fast"

eigenvalues in F(e), e = 0 or T.

This will actually determine the intege=s ny and n, used throughout. We'll
tater fird that selecting e = 0 (e = T) will be natural if the fast eigen-
values of A(t) are all stable (unstable) everywhere.

we now begin an extended discussion on how to compute L{e). In so
doing, we make improvements on previous solutions to the time-invariant A
problem for which L(t) is constant. If we partition the spectral decompo-

sition of A(e) as

9,
|
Ae) M'O -JM :

where \(J]) = S(e) and M = (Mij)’ we can always reorder the entries in

the state vector x so that the Ny xony matrix M]] is nonsingular. The




M

1

columns of {; will span the " dimensional eigenspace of A(e)
21

corresponding to the slow eigenvalues in S(e) and

_ -1
() L{e) = MM

will be the unique solution of the algebraic Riccati equation

=0,

(12) A22(e)L - LA]](e) + LA]Z(e)L - AZ](e)

i.e. L{e) = 0, achieving the time-scale decoupling

(13) x(/“x”(e)) = S{e) and x(f-\zz(e)) = Fle) .

Though the matrix equation (12) has many solutions, only (11) provides

the desired time-scale separation {cf. Anderson [2]). We also note that

(11) avoids the use of vectors in the Ny dimensional fast eigenspace.

An alternative representation

(14) Le) = Qph,;

in terms of the left eigenspace corresponding to the Ny fast eigenvalues

of A{e) would be more practical if N, << ny. The corresponding

upper triangular transformation might then be more convenient then T

since it would first isolate the purely slow component. Here we have parti-

! tione M'1 = (Qij) after its first Ny rows and columns and the invertibility

)
N of 022 follows fron that of H]]. The nontrivial result (11) follows via
’ linear algebra, as does (14). Specifically, if A]](e) has the decompos-

ition XGX—], the algebraic Riccati equation can be rewritten as




X X
AZ](e) - A22(e)L(e) = -L(e)XGX-]. For ¥ = -L(e)X, A(e)[£] = [;]G, S0

X M]] ’
Y = K for some non-
- M

21
= -MZ]M;}. Calculating further with this

A(ﬂ]](e)) =S{e) implies that we must have

singular K, i.e. L(e) = -YX_]

L(e), ﬂ(e) = T](e)A(e)T{](e) is upper block triangular. Recent work in
Medanic {22] also describes the inyariant manifolds of such matrix

Riccati equations. Watkins (39] mentions numerical difficulties occurring
when M]] is i11-conditioned.

Note further that any n dimensional basis of the slow eigenspace

M, .
could be used instead of {; J in (11) to obtain L(e). One possibility
L21
is to compute n Schur vectors for this siow eigenspace, cf. e.g. Laub
[20}. Once an approximate L{e) is obtained, one may improve on its

accuracy by iteration in the linear equation
< -1
(15) Li+1 = (Azz(e) + L1A12(e)) (LiA]](e) + AZ](e)) .

Anderson [2] shows that this iteration converges linearly with asymptotic
rate F'](e)§(e), so this method is particularly well-suited to systems
whose time-scale separation parameter u is very small.

The iteration scheme (15) can be obtained from the simultaneous
iteration method (cf. Stewart [34} and Avramovic [4]) for calculating
the dominant eigenspace corresponding to the n, fast eigenvalues of A(e).

That method generates the n, xn matrix V as the limit of the iteration

(16) Vk+] = VkA(e) .




Splitting Vv = [Vkl Vk2] after its first ny columns and setting Lk =
V;;Vk] (cf. the alternative representation (14) for L(e)), (16) reduces
to (15). The asymptotic rate of convergence ¥'1(e)§(e) was known in this
context. Indeed, the fact that (16) converges globally under very mild
assumptions on VO implies that our iteration scheme (15) will also be
robust with respect to initial iterates. Thus L0 need not be generated
through a preliminary approximate eigenanalysis of the slow eigenspace

of A{e); in practice a trivial L0 achieves convergence. The reader won't
be surprised to find closely related analysis in the stiff differential
equations literature, cf. e.g. Alfeld and Lambert [1].

The Riccati differential equation for L(t) will have the constant

solution L(e) when A is constant or when it is possible to find a
N
constant basis { {], with N] invertible, for the slow eigenspace of A(t).
NZ

Otherwise, we need to integrate the ny X N dimensional initial or
terminal value problem (10), (11) for L(t). We shall assume that it

provides a transformed system for z which is two-time-scale. Specifically,

we suppose:

(H2) the solution L(t) of the matrix Riccati problem remains

bounded throughout 0 < t < T and the eigenvalues of the

N A]ZL remain small in magnitude

compared to those of ﬂzz(t) = Ay, * LA, throughout the

matrix A]](t) = A

interval.
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If this hypothesis fails at any point, our order reduction procedure
will simply not be appropriate. We note that some leeway is allowed in
judging the separation of eigenvalues between ﬂ]] and A22’ i.e. in
deciding just how small a p is small enough. Computational and stability
aspects of the integration procedure will be illustrated below through
discussion and examples.

One can proceed further and block diagonalize the upper triangular

matrix A by a second nonsingular transformation

(17) y = Té(t)z = T(t)x

for

and
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with A, = k - A

K + KA22 + A]2 and B = TB. If the n x n, matrix K

12 1
satisfies the linear differential equation

(19) K = A]](t)K - KAZZ(t) - A]Z(t) .

the matrix A will be block diagonalized and the system for y will be time-
scale decoupled, i.e. the system for the first N components of y will be

completely decoupled from that for its last n, components. Corresponding

to the endpoint condition [(e) = 0 for L, we now impose the condition

K(T - e) = 0 at the opposite endpoint because the variational equation

A NS

11

for L is opposite in stability to the equation (19) for K. Thus K(T - e)

will satisfy the Liapunov equation

A ~

(21) A]](T - e)K(T - e) - k(T - e)A22(T -e) - A12(T -e)=20.

Its solution is unique because A]] and 522 have no common eigenvalues,
cf. e.g. Bellman [6]. An explicit solution is given by K(T -~ e) =
'MIZ(T - e)Q22(T - e) where M]2 and 022 are sub-blocks of the modal
matrix M for A(T - e) and its inverse 0, cf. (11) and (14). It is
preferable, however, to obtain K(T - e) numerically by iteration in the
equation

~ A1

(22) Kig (T - e) = (A]](T - e)Kj(T ~e) - A]Z(T - e))AZZ(T - e)

J+1

with initial iterate KO(T - e) =0. As in the iteration scheme for

L(e), the convergence will be rapid for l]ﬁé;(T - e)l] |lA]](T -e)l] <u




small in the spectral norm. When A is time-invariant, this provides the
constant matrix K appropriate throughout the interval. More generally,

however, we assume

(H3) The solution K(t) of the linear terminal or initial

value problem (19), (21) stays bounded throughout

0<t<T.

We note that (H3) is automatically satisfied if K(T - e) and the coeffi-
cients in the differential equation (19) remain bounded.

With these three hypotheses, our time-varying LK transformation (5)
has now become completely determined, and our problem (1) is reduced to

solving the time-scaie decoupled system

(23) 5’] = A]](t)y] + B](t)u »

(24) .Yz = AZZ(t)‘yZ + Bz(t)u ’
ry’I _ r'é'

where y = L ]1 and B = TB = ‘”;} is partitioned after its first Ny rows.
Yy B

Boundary conditions for x and y are related through the nonsingular
matrix T. The solutions of (23) and (24) are given by

t

. f v (v ()8 (s)uls)ds

(25) y. (t) = Y. (t)c; ; i

i =1 and 2, for constant vectors Ci» where the Yi are fundamental

matrices satisfying

?].=fx1..(t)v., Y.(0) =1, 0<t<T.

1 1
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Though the representation (25) is useful, direct numerical integration
for y, and Yy is preferable to numerical impiementation of (25).
Using the spectral norm, our two-time-scale assumption implies that

-1

3A11( M) = 5(6) white [[A(0)]] < F7 (1), so [iRy (1)) =

A TN Ry (0D 11 < wllAyp(e){. Thus, Vo(t)

O AR, < 3(0)F
is rapidly varying compared to Y](t). Indeed, when Azz(t) has eigen-
values with large negative real parts, say of order O(QT), YZ decays to
zero exponentially fast and it becomes negligible outside an initial
0(eT) boundary layer. Likewise, when the eigenvalues of ﬁ1](t) are
small, like 0{x), Y](t) is nearly constant throughout [0,T] provided

T << 1/kx. 1t is natural, then, to think of ¥y as the predominantly slow
solution and of yz as the predominantly fast solution, realizing that the
slow/fast interpretation could be corrupted by the forcing control

B(t)u(t). This slow/fast decomposition would carry back to the original

system (1) as

[y ()
—
(26)  w(t) =T (t)tfz(t)

Altogether, then, we've transformed our original problem (1) under
hypotheses {H1)-{H3) into the integration of four separate problems for
L, K, Y and Yoo with L and K being constant for time-invariant A
matrices. We'll now show how the procedure can be substantially
simplified through approximations when we impose a fast mode stability

assumption. Other approximations will be appropriate under different

hypotheses.
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3. Reduced order modeling for the initial value problem—approximate

analysis.

Let's now consider the initial value problem for (1), assuming

that the time scale parameter (cf. (3) and (H1)) is small, i.e.
(27) woe< 1,
and that

(H4) the eigenvalues fj(t) of Azz(t) all have large negative

real parts throughout 0 < t < T.

Then
11 -1
(28) e = - 4T max [Re FONGE
1§j§n2 J
O<t<T
also holds.

Because (3) implies that IIA]]II << IIAZZII, we can expect the
solution Y. of the linear variational equation (20) for L to be well-
approximated through the nearby system E = 'ZAZZ' Further, the large
magnitude and stability of the eigenvalues of R22 suggest,~ via singular
perturbations theory, that the initia] value problem for ¥ will have
bounded solutions asymptotic tong(t) = 0 away from t = 0, while the
solution of the corresponding terminal vatue problem will become

unbounded for t < T. Therefore, errors made in the numerical integra-

tion of the Riccati equation for L(t) should decay exponentially to

zero in forward time and grow exponentially in reverse time. To keep
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the calculated L(t) bounded, then, under hypothesis (H4), we must take
e =0, i.e. we define L and K through initial and terminal value
problems, respectively. Indeed, the Tinear system for K will be well-
approximated through the nearby system é = 'kAZZ - A]2 since p << 1,
and as ¢ ~ 0 (and [iﬁzsz + ) the limiting solution will satisfy

K= 0 fortc<T. Thus, the familiar quasi-steady state approximation,
consistent with our terminal condition k(T) = 0, holds asymptotically.

For this reason, we rewrite the system (19) for K as
(29) K(t) = K (t) + s(K(t))
with the nonhomogencous term

_ -
K](t)— —A]Z(t)AZZ(t)

and the linear operator

N (A v evpnd
S(K) = (A]]h - K)I\Z2 .

He shall solve the system by successive approximations, starting with
the trivial iterate K (t) 0. Thus, we successively define the

approximants

¥ (30) K.~ K, + ST (Ky) is2,

for K where S*(K;) = S(s"7'(K;)) for each ¢ > 1 and S°(K;) = Ky. In
practice, only a few iterates will be needed because S(K) has a small
norm due to the sizesofu and e, i.e. of IEA]1JI JjAé;l] and ]}Aé;]].

) This iteration scheme avoids the need to directly integrate the terminal

o

Do ¥4
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2]

value problem for K and to store its solution for later use in evaluating
T and T']'and for integrating the initial value problem for 2% The
successive differentiations of K] involved don't pose a real problem
because k(t) is asymptotically negligible for t < T. Indeed, if we omit
the derivative term in (29), our iterates (30) at t = T coincide with
those of (22) used to obtain K(T). The resulting slow-mode or quasi-
steady state approximation Ks(t) to K(t) will be asymptotically valid

for t < T. The approximation Ks(t) x K(t) should even be fairly good

o P 3 W g O, Tz e

near t = T, because we picked k(T) = 0.

Returning, then, to the initial value problem (24) for Yoo with
22) has only large stable
elements suggests that Y5 should be nearly equal to its slow-mode (or

¥,(0) =[L(o) In-]x(o), the fact that Re A(A
2

—

quasi-steady state) approximation }2 ~ 0, i.e.
/\_‘] ~

for t > 0. Indeed, singular perturbations theory would show that the

"composite" solution
(32) Yolt) = ¥y, (t) + yoe(t)

will provide a uniformly valid approximation to 7 with the fast-

varying vector Yog satisfying
(33) Yor = Ayp(t)yoe Yoe(0) = ¥,(0) - v, (0)

and decaying to zero exponentially in an 0(cT) neighborhood of t = 0.

[If a good approximation to 2 js needed near t = 0, it is necessary




! : ,1‘2!
‘ . 20 i

to integrate the system for Yor only over a short initial interval, but
with a relatively small mesh spacing.) Because yz satisfies

Y = Ryp¥p * Bpu * Ypg s ¥,(0) = yp(0)
comparison with (24) suggests that the composite vector ;2 will be a good
approximation to 2 {and Yo will be a good approximation to Y, away from
t = 0) provided 1}25[ is small on 0 < t < T compared, say, to the

supremum of lyZ(O)i and [yZS(t)]. Thus, we'll assume

(H5) the slow-mode approximation Yoe to ¥y is stowly-varying

throughout 0 < t < T.

We recall that slowly-varying functions play an important roie in
asymptotic analysis (cf. Feshchenko et al. [13]) and note that the
assumption is reasonable in the common situation that Yo is itself

small when ]Bzu{ is small compared to the large [iAzzj{. Hypothesis (H5)
also reflects the fact that rapid variation of ézu could cause the state

Yy to be fast for t > 0, even though the free response would be
asymptotically negligible there. We note, in particular, that because 32 =
' (L 1 18, Yoo could become rapidly varying when our asymptotics break-

n
2
down because L isn't small or the forcing Bu is rapid. The asymptotic

s

;‘ decomposition (32) of Yy into sTow and fast parts could also be motivated
tf by using Laplace's method (cf. Olver [25]) on the integral representation
! (25) for 7e

_ We shall integrate the full n dimensional system (23) for ¥ using
f the initial vector y,(0) = (In] + K(0)L(0) K(9))x(0). (If the eigen-

i A
o values of A]] have large real parts, we might also be able to approximate

Y 4
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2 by a quasi-steady state approximation Yis within (0,T). Then,
however, a change of time scale s = Xt for an appropriate constant X
might eliminate this stiffness.) When ][ﬁ]]]( isn't large and the
control term B]u isn't rapidly-varying, (23) can be integrated with step-
sizes much larger than would be necessary for integrating the original
system.

For t ~ 0, then, the solution of our original probiem will be well-
approximated by the slow-mode approximation

A , [y,(t)

(34) R(t) = T (t)bzs(t)

(If desired, we'd have to correct this near t = 0 by taking the fast-
mode correction yzf(t) to Yo into account.) For t > 0, we've achieved
a substantial order reduction because we need only integrate an initial
value problem for L(t) and another for y](t). This is because y, is
obtained explicitly from the algebraic equation (31) and K is obtained
from a fast-converging iteration scheme (30), under our fast-mode
stability assumption.

A11 these arguments can be made completely rigorous by explicitly
using the small parameters 1 and © to rescale our differential equations
and carrying out a careful asymptotic analysis as ¢ and u simultaneously
tend toward zero. For only moderately small parameters, a full integra-
tion of the linear systems for K and Yo might be needed. The connection
between our approximations and numerical methods for systems of stiff
differential equations is closest to the smooth approximate particular

solution techniqueof Dahiquist [9] and Oden [24].
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To summarize, we list the somewhat oversimplified steps appropriate

(1)

for obtaining a reduced order model of our fast-mode stable, two-time

scale system on t > 0. They are:

Use the eigenvalues of A(0) to determine the number n, of

1
slow modes.

Obtain L(0) by iterating in the equation

Liag = (Appl0) + LAL(0))7 (LA (0) + A, (0)),

Integrate the initial value problem for

L= A22L - LAj, + LAJ L - A21, making sure that the trans-

11 12
formed system remains fast-mode stable and two-time scale

with ny constant throughout 0 < t < T and that the slow-

]
mode approximation Yye remains slowly-varying there.

Obtain K{t) on [0,T] through the iteration
N A : ~o
= (-7 K.
Kiap (8= R (e) + A (E)K(E) = K5 (E))AS, (1),
j=>0, Ko(t) = 0. (Alternatively, obtain the slow-mode

approximation Ks(t) by omitting the derivative term.)

Integrate the initial value problem for yT(t) and obtain the

reduced-order solution

—

S T -K(t) 1

i ] i

‘ ‘ ly, {(t) for t > O,
x(ti y(t) + | e L] 2s

ey I, * LD )|
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4. Related Problems.

a. Nearly constant slow modes are found for two-time-scale systems
when the eigenvalues of A22 are not large. Then, the small size of the
eigenvalues of A]] suggests that Y](t) is nearly constant on a fixed
finite interval. Though the dynamics for y, are not simplified, we

obtain order reduction in the sense that 2 will simply track its

forcing, i.e. y](t) x y1(0) + J B](s)u(s)ds.

b. It may sometimes be simpler to simply block-triangularize our
system matrix through the matrix T]. In the system (9) for

fz])
%2

mation for Z, could be used in the forcing for zy on t > 0. We block-

, the fast modes are decoupled via L(t), so 2 slow-mode approxi-

diagonalized our system, since the linear problem for K(t) seems simple

after the quadratic problem for L(t).

c. When the eigenvalues of A22 have both large positive and large
negative real parts, the initial (terminal) value problem for L{t)(K(t))
will no longer be well-posed. Only certain two-point problems for x can
be expected to have bounded solutions (cf. 0'Malley [26] and O0'Malley and
Anderson [28]). Effective use of time-scale separation should, nonethe-
Tess, be computationally significant in obtaining approximate solutions

to appropriate two-point problems.
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d. The Ny "slow” solutions of the unforced problem are spanned by
[ 'n
1

[-L(t)
initially slow modes of our system (1) forward in time to obtain the

X, ()
n X ny matrix [ I, we'll necessarily have L(t) = —Xz(t)x{](t). Thus

kxz(t”

the columns of the matrix )Y](t). I1f we therefore inteqgrate the
}l

existence of L is guaranteed as Tlong as X](t) remains nonsingular. For
problems where L becomes unbounded on 0 < t < T, there still remains the
possibility of reinitializing our problem to keep the appropriate Ny xomy
matrix nonsingular. This corresponds to the reorthonormalizations used

by Scott and Watts [32].

5. Numerical Examples.

In practice, the need for reduced-order modelling requires us to use
our schemes on nroblems where the time-scale separation parameter U and
the fast-mode stability parameter ¢ are not asymptotically small. Among
many other considerations, we must then be particularly concerned with
the difference between eigenvalue stability and actual stability and with
the occurrence of eigenvalues with large imaginary parts that can ailow
stow modes (so classified by eigenvalue magnitudes) to decay faster than

some fast-modes. The latter concern might be illustrated through a third

order system with the slow eigenvalues s = -1 and the fast eigenvalues
f] o= -0.1 + 1310, Then,r = 29, so for T sufficiently large, all modes

will be negligible away from t = 0. Otherwise, the fast modes cannot be

ignored. A check on the relative stability of the slow and fast




o
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subsystems can be made through the ratio o(t) = -maxiRe(si(t)h
i
/max(Re fj(t)) and its mwaximum over 0 < t < T.
J
If A(t) has the time-varying spectral decomposition A = MJM_], the

change of variables w = M"]x converts the problem (1) intow = (J - M'IM)w
+ M VB, Thus eigenvalue rotation, measured by the size of M-]M, can
substantially alter the stability sugaested by the eigenvalues of A and J.
Rapid variation of the slow-eigenspace of A could, in particular, make L
and Yoo rapidly-varying, and jeopardize the appropriateness of our

approximations.

We shall consider two time-varying third order problems with one
1

slow mode. Specifically, let the state matrices Ai = MJiM' for i =1
and 2 have
(-1 -1 =2)01 + n(t) 0 0 \
M= ’ 1 2 1 0 1 0 J
: |
L2 1 1l o 0 (1)

with J] and JZ being real canonical forms with snectra X(J]) =

(1 + h'(t)){1,10,12} and K(JZ) = -(1 + h'(t)){1,3 + 101}, Thus for both

examples, u = 0.1 while (ﬁ],rz) = (0.022,0.074) for T = 4. Therefore, the
fast-mode stability and the relative stability of the fast modes is stronger
for the first example. We'll also take x(0) =3 = : , u(t) = sinznt,
and h(t) = h'(t) = & simt/a. 1

For both examples, the appropriate initial condition for th$ Riccati
differential equation (10) is the two vector L(0) = [;;EE;J = {;}. Since

the quadratic equation (12) provides a steady-state for the corresponding

differential equation (10) at t = 0, we might attempt to find L(0) as an
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equilibrium solution. Figure 5 renresents the Q] - 92 phase plane for
example one. As shown, all points above the line x] = 3%2 - 1 converge
to L(0), but noints below this line diverge to infinity. For example
two, a slow oscillatory convergence is illustrated in Figure 6. Thus,
this natural way to seek L(0) is only locally convergent, in contrast to
the safer, globally convergent iterative method we described previously
via (15).

Once L{0) is obtained, the time-varying Riccati[gq?igion (10) can

1

be integrated from t = 0 to 4. The solution L(t) = 9, (t) for example
U0

one is illustrated in Figure 7. We have also plotted the smooth solution

L(t) with L(0) = L(0) of the algebraic Riccati equation obtained when we
set the derivative term in (10) to zero. L(t) is a good approximation to
L(t). This should not be unexpected since E(t) = L(t) - L(t) satisifes

~

£ = (Ayy + LALL)E - E(A;y - AL + EALE - Lon 0 < t<4withE(0) = 0.

11 12

Presuming A22 + [A12 maintains large, strongly stable eigenvalues

compared to A]1 - A]ZE and presuming L isn't large, singular perturbations
would suggest a small error E(t) throughout 0 < t < 4. Thus, we could
often expect to use E, the solution of an algebraic system, to approximate
L(t). Figure 7 also includes trajectories E(t) for the Riccati system
with perturbed initial conditions. They, too, converge to L(t) for t > 0
provided the initial perturbations aren't too large. With the weaker

fast-mode stability of Example 2, we found that the initial behavior of L

trajectories was oscillatory and convergence to L was delayed (cf.

Figure 8).
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Figure 5:

The phase plane
for the Riccati
solution components
for Example 1.
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Figure 6:

The phase plane
for the Riccati
solution component-
for Example 2.




2.5

1.5

2.0

time, t

Figure 7:

Solutions L(*
and [(t) of
the Riccati
differential
equation and
the algebraic
Riccati
equation for
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Figure 8:

Solutions L{.
and L(t) of
the Riccati
differential
equation anc
the algebrai-
Riccati
equation for
Example 2.




27

e s o

The linear differential system (19) for K(t) = (k](t) k2(t)) was
integrated backward in time from t = 4 to t = 0. It could also be
solved readily via the iteration approach. The relative behavior of
K(t), of the corresponding linear algebraic problem for k(t), and of the
problem for R(t) with perturbed terminal values is analogous to that for
L(t), L(t), and E(t), except that the convergence of K to K also holds
for large perturbations of end vectors.

By changing h' to the more oscillatory é»sin nt, the eigenvalues of
A are changed, but there is little change in the solution L(t) of the
Riccati system. The corresponding change of h(t) to %>sin mt, however,
produces a more rapid oscillation in the eigenspace of A(t) and there
results more rapid change in the decoupling vector L(t). Nonetheless,
as Figures 9 and 10 illustrate, E(t) still remains a good approximation
to L(t).

By superposition, the solution x{t) of our forced initial value
oroblem (1) can be considered to be the sum of the separate responses of
the unforced system with initial vector x{0) and to the input u(t) with
zero initial state. The unforced response is illustrated in Figures 11
v and 12. The exact solution x(t) is well approximated by the first order

approximation x(t) outside an initial transient region of approximate

t'd

thickness 20c. This corresponds to 0.5 time units for Example 1 and 1.7

cw

units for Example 2. For slowly-varying control inputs u(t), the
agreement between x{t) and x(t) is very good for both examples. For the
rapidly varying control input u(t) = sinznt, however, the resulting

approximations Q(t) for Example 1 are better than for Example 2, which

& has weaker fast-mode stability (cf. Figures 13 and 14).

;
|
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